Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Tipo de estudo
Intervalo de ano de publicação
1.
Anaerobe ; 56: 1-7, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30615946

RESUMO

The ruminal bacteria Pseudobutyrivibrio xylanivorans strain 2 (P. xylanivorans 2), that mediates the digestion of plant fiber, is considered an attractive candidate for probiotics. Adherence to the epithelium of the digestive tract of the host is one of the major requirements for probiotics. In this study, we assessed the adhesion of P. xylanivorans 2 to SW480 cells and characterized this process utilizing multiple microscopy approaches. Our results indicate that a multiplicity of infection of 200 CFU/cell allows the highest bacteria to cell binding ratio, with a lower percentage of auto-agglutination events. The comparison of the adherence capacity subjected heat-shock treatment (100 °C, 1 min), which produces the denaturalization of proteins at the bacterial surface, as opposed untreated P. xylanivorans, suggested that this bacteria may attach to SW480 cells utilizing a proteinaceous structure. Confocal microscopy analyses indicate that P. xylanivorans 2 attachment induces the formation of F-actin-enriched areas on the surface of SW480 cells. Transmission electron microscopy (TEM) revealed the formation of a structure similar to a pedestal in the area of the epithelial cell surface, where the bacterium rests. Finally, a casual finding of TEM analysis of transverse and longitudinal thin-sections of P. xylanivorans 2, revealed irregular intra-cytoplasmic structures compatibles with the so-called bacterial microcompartments. This is the first ultrastructural description of bacterial microcompartments-like structures in the genus Pseudobutyrivibrio.


Assuntos
Aderência Bacteriana , Clostridiales/fisiologia , Células Epiteliais/microbiologia , Linhagem Celular , Humanos , Microscopia , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Temperatura
2.
Anaerobe ; 42: 17-26, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27417742

RESUMO

High-grain feeding used in the animal production is known to affect the host rumen bacterial community, but our understanding of consequent changes in goats is limited. This study was therefore aimed to evaluate bacterial population dynamics during 20 days adaptation of 4 ruminally cannulated goats to the high-grain diet (grain: hay - ratio of 40:60). The dietary transition of goats from the forage to the high-grain-diet resulted in the significant decrease of rumen fluid pH, which was however still higher than value established for acute or subacute ruminal acidosis was not diagnosed in studied animals. DGGE analysis demonstrated distinct ruminal microbial populations in hay-fed and grain-fed animals, but the substantial animal-to-animal variation were detected. Quantitative PCR showed for grain-fed animals significantly higher number of bacteria belonging to Clostridium leptum group at 10 days after the incorporation of corn into the diet and significantly lower concentration of bacteria belonging to Actinobacteria phylum at the day 20 after dietary change. Taxonomic distribution analysed by NGS at day 20 revealed the similar prevalence of the phyla Firmicutes and Bacteroidetes in all goats, significantly higher presence of the unclassified genus of groups of Bacteroidales and Ruminococcaceae in grain-fed animals and significantly higher presence the genus Prevotella and Butyrivibrio in the forage-fed animals. The three different culture-independent methods used in this study show that high proportion of concentrate in goat diet does not induce any serious disturbance of their rumen ecosystem and indicate the good adaptive response of caprine ruminal bacteria to incorporation of corn into the diet.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Microbioma Gastrointestinal/fisiologia , Poaceae/metabolismo , Rúmen/microbiologia , Zea mays/metabolismo , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/metabolismo , Ração Animal/análise , Animais , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/metabolismo , Butyrivibrio/classificação , Butyrivibrio/genética , Butyrivibrio/metabolismo , Clostridium/classificação , Clostridium/genética , Clostridium/metabolismo , Fermentação , Firmicutes/classificação , Firmicutes/genética , Firmicutes/metabolismo , Fístula Gástrica , Cabras , Concentração de Íons de Hidrogênio , Filogenia , Poaceae/química , Prevotella/classificação , Prevotella/genética , Prevotella/metabolismo , Ruminococcus/classificação , Ruminococcus/genética , Ruminococcus/metabolismo , Análise de Sequência de DNA , Zea mays/química
3.
Biocell ; 20(3): 339-342, Dec. 1996.
Artigo em Inglês | LILACS | ID: lil-335982

RESUMO

The complex mechanism of intracellular transport is regulated by free calcium in different manners. Calcium binding proteins regulate several aspects of the vesicle fusion mechanism mediated by NSF (N-ethylmaleimide sensitive fusion factor). At least in some regulated exocytosis, calcium-binding proteins are the trigger for fusion downstream of NSF, Still, calcium-binding proteins, such as annexins, may be part of a different fusion mechanism mediating some specific transport steps or working in parallel to the NSF-dependent fusion process. Calcium is not the only ion necessary for the function of factors involved in vesicular transport. A zinc requirement has been also proposed. One of the zinc-dependent factors is probably a protein with a cysteine-rich region that coordinates zinc and binds phorbol esters. Although protein kinase C is the more prominent family of proteins carrying this domain, the factor necessary for transport does not appear to function as a kinase.


Assuntos
Animais , Cães , Transporte Biológico , Cálcio , Proteínas de Ligação ao Cálcio , Metaloproteínas/fisiologia , Zinco , Linhagem Celular , Ésteres de Forbol/metabolismo , Exocitose , Rim , Líquido Intracelular/metabolismo , Fusão de Membrana , Ligação Proteica , Proteína Quinase C/fisiologia , Proteínas de Transporte/fisiologia , Vesículas Revestidas/fisiologia
4.
Biocell ; 20(3): 339-342, Dec. 1996.
Artigo em Inglês | BINACIS | ID: bin-6365

RESUMO

The complex mechanism of intracellular transport is regulated by free calcium in different manners. Calcium binding proteins regulate several aspects of the vesicle fusion mechanism mediated by NSF (N-ethylmaleimide sensitive fusion factor). At least in some regulated exocytosis, calcium-binding proteins are the trigger for fusion downstream of NSF, Still, calcium-binding proteins, such as annexins, may be part of a different fusion mechanism mediating some specific transport steps or working in parallel to the NSF-dependent fusion process. Calcium is not the only ion necessary for the function of factors involved in vesicular transport. A zinc requirement has been also proposed. One of the zinc-dependent factors is probably a protein with a cysteine-rich region that coordinates zinc and binds phorbol esters. Although protein kinase C is the more prominent family of proteins carrying this domain, the factor necessary for transport does not appear to function as a kinase.(AU)


Assuntos
Animais , Cães , RESEARCH SUPPORT, NON-U.S. GOVT , RESEARCH SUPPORT, U.S. GOVT, NON-P.H.S. , Transporte Biológico , Cálcio/fisiologia , Proteínas de Ligação ao Cálcio/fisiologia , Metaloproteínas/fisiologia , Zinco/fisiologia , Proteínas de Transporte/fisiologia , Linhagem Celular , Vesículas Revestidas/fisiologia , Exocitose/fisiologia , Líquido Intracelular/metabolismo , Rim , Fusão de Membrana , Ésteres de Forbol/metabolismo , Ligação Proteica , Proteína Quinase C/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...